Протоколы Internet

         

Передача сигналов по линиям связи


2.1 Передача сигналов по линиям связи

Семенов Ю.А. (ГНЦ ИТЭФ)

Теорема Шеннона ограничивает предельную пропускную способность канала I с заданной полосой пропускания F и отношением сигнал/шум S/N :

    [2.1]

Для стандартного телефонного канала F=3кГц, N/S=30db, следовательно, теоретический предел для публичной коммутируемой телефонной сети равен примерно 30кбит/с. Ослабление для телефонных скрученных пар составляет около 15 дБ/км, дополнительные ограничения возникают из-за перекрестных наводок. Стандартные проводные линии связи имеют ослабление 6 дБ/км на частоте 800 Гц, или 10 дБ/км на частоте 1600 Гц. На рис. 2.1.1 показана зависимость ослабления от частоты передаваемого сигнала для медной линии с сечением 0,5 мм.


Рис. 2.1.1. Зависимость ослабления сигнала в медной линии сечением 0,5мм от частоты

От частоты зависит фаза (из расчета на километр) и волновое сопротивление скрученной пары (см. рис. 2.1.2), по этой причине искажения формы сигнала при заметной длине линии неизбежны.

Из формулы [2.1] видно, что расширять пропускную способность канала можно за счет широкополосности и высокого отношения сигнал-шум. Существует много источников шума, один из главных тепловые шумы (N = kTB, где T – температура в градусах Кельвина, B – полоса пропускания приемника, а k – постоянная Больцмана). На практике существенно большее влияние оказывают различного рода наводки. Увеличeние пропускной способности сети достигается путем сокращения длины кабеля (уменьшение расстояния между узлами сети), заменой типа кабеля, например, на провод с большим сечением, или применив оптоволоконный кабель. Определенный эффект может быть получен и с помощью усовершенствованной системы шумоподавления (новый, более эффективный модем).


Рис. 2.1.2. Зависимость волнового импеданса скрученной пары и фазы (сечение 0,5мм) от частоты

Сопротивление скрученной пары от коммутатора до терминального оборудования может лежать в пределах 800-20000 Ом. Следует учитывать, что при подаче питания на терминальное оборудование (телефон) по подводящему кабелю, большое его сопротивление, помимо прочего, приведет к падению питающего напряжения. В многожильных кабелях определенные проблемы создают перекрестные наводки и шумы. Обычно рассматриваются два случая перекрестных наводок:




  • Источник сигнала и приемник находятся по одну сторону кабеля (NEXT - near end crosstalk);


  • Приемник и источник находятся на разных концах кабеля (FRXT - far end crosstalk).


  • NEXT-наводки при большом числе пар проводов в кабеле подчиняются закону f1.5 , а их уровень составляет около 55 дБ при частоте 100 кГц. FEXT-наводки сильно зависят от схемы коммутации и разводки проводов и обычно менее опасны, чем NEXT. Еще одним источников наводок является импульсный шум внешних электромагнитных переходных процессов. Этот вид наводок обычно характеризуется процентом времени, в течении которого его уровень превышает порог чувствительности, и варьируется в зависимости от обстоятельств в очень широких пределах.

    При передаче по линии сигналы модулируются, при этом важно обеспечить сохранение среднего уровня сигнала (постоянной составляющей). Определенные искажения сигнала вносит сам кабель. Заметное влияние на характер искажений оказывает межсимвольная интерференция (ISI - Intersymbol Interference). Эта интерференция возникает из-за расплывания импульсов в процессе их передачи по линии и наезжания их друг на друга. Проблема усложняется тем, что характеристики передающей линии могут меняться со временем (коммутаторы и маршрутизаторы). По этой причине очень важно обеспечить идентичность условий передачи различных частот при наличии таких вариаций. Для решения этой задачи используются линейные эквилайзеры (рис. 2.1.3 и 2.1.4), которые выполняют эту операцию во всем спектре частот, или после стробирования для реального спектра сигнала. Этот метод чувствителен к шумам в системе. Эквилайзеры с решающей обратной связью (DFE - Decision Feedback Equalizer) не чувствительны к шумам, они управляются принятой информацией. Но влияние ошибок при приеме информации в этом случае может быть усилено.



    Рис. 2.1.3. Линейное выравнивание (эквилизация)



    Рис. 2.1.4. Эквилизация с помощью решающей обратной связи

    На практике линейное выравнивание и эквилизация с обратной связью совмещаются друг с другом и со специальными методами формирования передаваемых сигналов. Проблема усугубляется тем, что одна и та же линия используется для передачи данных в обоих направлениях одновременно.



    Для улучшения отношения сигнал/ шум следует поднимать амплитуду передаваемого по линии сигнала. Выбранное значение определяется требованиями перекрестных наводок и возможностями существующих БИС. В результате компромисса выбрана амплитуда 2.5 В на нагрузке 135 ом. Любые нелинейные искажения должны быть менее 36 дБ по отношению к основному сигналу. Учитывая динамический диапазон сигналов в линиях связи, отношение сигнал шум предполагается равным 20 дБ, что соответствует ограничению 6дБ на число ошибок 1/106 для гауссова распределения шума. При аналого-цифровом преобразовании одному биту соответствует 6 дБ.

    Обычно двухпроводная линия (тем более 4-х проводная) используется для одновременного двухстороннего обмена (full duplex). Эта задача может быть решена схемотехнически мультиплексированием по времени (TDD - Time Division Duplex) или частоте (FDD - Frequency Division Duplex). TDD довольно легко реализовать, этот метод не требует сложных фильтров и эквилайзеров. Метод TDD привлекателен при малых длинах кабеля для коммутируемых телефонных сетей.



    Рис. 2.1.5. Схема эхо-компенсации

    Более широко для реализации двухстороннего обмена по одной паре проводов используется метод эхо-компенсации. Этот метод предполагает вычитание передаваемого сигнала из принимаемого, определяя тем самым истинную форму входного сигнала. Если на приведенном рисунке 2.1.5 Zвх равно волновому сопротивлению линии, то выходной сигнал передатчика не будет влиять на работу приемника. Здесь предполагается, что выходное сопротивление передатчика много меньше z= zлинии. Учитывая вариации ослабления сигнала, схема эхо-компенсации должна уметь работать в очень широком динамическом диапазоне амплитуд, сохраняя удовлетворительную линейность. Это обстоятельство, а также зависимость zлинии от частоты, приводит к заметному усложнению схем эхо-компенсации (Рис. 2.1.6). Системы эхо-компенсации весьма чувствительны к временному разбросу срабатывания пороговых схем, так как это приводит к фазовому сдвигу вычитаемых друг из друга сигналов.





    Рис. 2.1.6. Схема эхо-компенсации с адаптивным фильтром

    На рис. 2.1. 7 показана зависимость скорости пропускания от сопротивления петли передающей линии для разных схем кодирования сигнала (пунктирной линией отображен вариант четырехуровневого кодирования). Те, кто работал с выделенными линиями, усвоили эту зависимость на практике. Если сопротивление линии более 1,5 кОм вы скоро будете знать дежурных вашей телефонной станции по имени, узнаете, что такое грозовые вставки и что они имеют привычку окисляться.



    Рис. 2.1.7. Зависимость максимальной скорости передачи данных от сопротивления петли передающей линии

    Различные методы модуляции приводят к разным уровням перекрестных наводок, и, как следствие, могут обеспечить разные скорости пропускания сигналов. Так применение линейной эквилизации при амплитудной модуляции дает улучшение пропускной способности примерно в 5 раз. Из рисунка 2.1.8 видно, что переход от линейного выравнивания к эквилизации с обратной связью позволяет добиться улучшения почти в 1,5 раза. Многоуровневый метод кодирования увеличивает скорость пропускания еще на 30%. Следует, правда, иметь в виду, что многоуровневый метод кодирования характеризуется большим уровнем импульсных помех и, следовательно, ошибок.



    Рис. 2.1.8. Минимальное отношение сигнал-шум при скорости передачи ~150кбит/с

    На рис. 2.1.8 показана зависимость отношения сигнал-шум от сопротивления петли для разных схем передающего канала. Пунктиром проведены зависимости для случая четырехуровневого кодирования. Кривые 1 соответствует случаю амплитудной модуляции с линейным выравниванием, а кривые 2 - варианту эквилизации с обратной связью.




    Содержание раздела